ASTA 2009
Annual Meeting and Trade Show
April 26-29, 2009
Loews Ventana Canyon Resort
Tucson, Arizona

GAMMA PROCESSING

Steve Markus, Director of National Accounts Food Safety

Irradiation Overview

- First irradiation of food patent, 1905
- Approved in over <u>42 countries</u>
- FDA approved for spices in <u>1983</u>
- Organizations approving food irradiation
 - American Medical Association
 - American Dietetic Association
 - American Council on Diet and Health
 - F.D.A.
 - U.S.D.A.
 - U.S. Public Health Service
 - Mayo Clinic
 - Center for Disease Control and Prevention
 - World Health Organization

What is irradiation?

High Frequency
Short Wavelengths

Low Frequency
Long Wavelengths

Gamma rays=weightless packets of energy called "photons"

Source of Co-60 GAMMA RAYS

Co-60 SOURCE RACK UNDER WATER

Gamma Irradiation

E-Beam, X-Ray Irradiators

E-Beam/X-Ray

Products Processed

Irradiated food is not radioactive

How Irradiation Works

Target Organisms

E. coli

Gamma Microbial Effectiveness

D10 value

- D10 = the amount of irradiation required to generate a 1-log reduction (measured in kGy)
- Typical pathogens
- Expected microbial reduction
 - Typical spice dose range is 5 to 30 kGy
 - Typical microbial reduction target = 5-log or greater
- No residues

Effectiveness of Gamma

- Typical D10 values (Irradiation exposure for 1-log reduction
 - E. Coli

.2 to .44 kGy

- Salmonella

.25 to .50 kGy

- Staphylococcus .25 to .60 kGy
- Typical dose range achieves 5-log reduction
 - 5.0 to 30.0 kGy

Yeast/Mold Doses

- Yeasts
 - ->10 kGy
- Molds
 - ->6 kGy

Physical Impact

- Surface color
 - High dose exposure may have color implications to:
 - Garlic

• Onion

Operational Issues

- Energy Source
 - Constant
- Density
 - Cycle Times
- Dose Range
 - Log Reduction
- Dose mapping
 - Dose Range
- Min. Runs
 - Efficiencies

Figure 2. Typical irradiation facility MAINCHAMBER CONCRETEWALLS6-12 THICK IRRADIATION SOURCE: (USUALLY COBALT-60) PACKED FOOD LOADED ON CONVEYOR

Source: Radiation Technology, Inc., Rockaway, NJ. Adapted <u>FDA Consumer</u>, July/August 1986, p. 14-15.

Costs

• Cobalt-60/Sole Sourced

• Canadian Currency

Summary

- Irradiation has been thoroughly tested
- Approved by several agencies and countries
- The process is clean, non-evasive, & no residues
- Tested dose ranges provide predictable microbial reductions